首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2707篇
  免费   104篇
  国内免费   107篇
系统科学   5篇
丛书文集   89篇
教育与普及   25篇
理论与方法论   2篇
现状及发展   10篇
综合类   2787篇
  2024年   3篇
  2023年   15篇
  2022年   18篇
  2021年   27篇
  2020年   24篇
  2019年   19篇
  2018年   29篇
  2017年   45篇
  2016年   44篇
  2015年   76篇
  2014年   90篇
  2013年   79篇
  2012年   134篇
  2011年   148篇
  2010年   98篇
  2009年   111篇
  2008年   124篇
  2007年   219篇
  2006年   169篇
  2005年   156篇
  2004年   132篇
  2003年   114篇
  2002年   122篇
  2001年   113篇
  2000年   87篇
  1999年   72篇
  1998年   68篇
  1997年   79篇
  1996年   63篇
  1995年   71篇
  1994年   55篇
  1993年   58篇
  1992年   44篇
  1991年   47篇
  1990年   48篇
  1989年   40篇
  1988年   39篇
  1987年   23篇
  1986年   13篇
  1985年   2篇
排序方式: 共有2918条查询结果,搜索用时 203 毫秒
991.
采用水热合成法,以2,5-吡啶-二羧酸为配体,得到了Cd(Ⅱ)配聚物:[Cd2(2,5-pdc)2(H2O)4]n(2,5-H2pdc=2,5-吡啶-二羧酸).采用X射线单晶衍射确定了配聚物的晶体结构.配聚物的不对称单元为Cd2(2,5-pdc)2(H2O)4,其中两个不等效的金属Cd(Ⅱ)离子均为6配位.在配聚物晶体中,Cd(Ⅱ)离子之间通过pdc2-上的羧基O原子连接,形成了具有2D结构的配聚物,氢键进一步将其连接成3D超分子.采用表面光电压光谱(SPS)研究了配聚物的表面光电性能.结果表明,该配聚物在300~800nm范围内呈现出较强的光伏响应,表明他具有一定的光-电转换能力.对配聚物的UV-Vis-NIR吸收光谱、IR光谱进行了测定和指认,并将SPS谱与UV-Vis-NIR吸收光谱进行了关联.  相似文献   
992.
采用水热方法,合成Ni(Ⅱ)配聚物[Ni(H2btec)(phen)·(H2O)2]n(H4btec=1,2,4,5-均苯四甲酸,phen=1,10啡啰啉),通过单晶X射线衍射确定了配聚物的晶体结构.X射线单晶衍射结果表明,配聚物属于三斜晶系,P-1空间群,晶胞参数为a=0.953 5(2)nm,b=1.066 8(2)nm,c=1.092 5(2)nm,α=76.905(3)°,β=74.780(4)°,γ=74.759(3)°,V=1.019 7(4)nm3.在晶体中,中心金属Ni(Ⅱ)离子为五配位,是由H2btec桥连成的2D配聚物,并由氢键连成3D网络结构.在室温下对配聚物的IR和UV-Vis吸收光谱进行了测定和分析指认.利用表面光电压光谱(SPS)研究了配聚物的表面光伏性能.结果表明,配聚物在300~800nm范围内有较宽而明显的光伏响应带,表明它具有一定的光-电转换能力.将其SPS与UV-Vis吸收光谱进行关联,发现它们密切相关.  相似文献   
993.
使用常温溶液合成方法,成功合成出了2个新的基于β-Anderson阴离子{Cr(OH)6Mo6O18}3-配体的Ag(Ⅰ)离子配合物:[{Ag(C6H5NO2)2}2][Ag{Cr(OH)6Mo6O18}(H2O)2](C6H5NO2)21和(NH4)3[Ag{Cr(OH)6Mo6O18}][Ag2(H2O)2{Cr(OH)6Mo6O18}]·10H2O2,并通过元素分析、单晶X射线分析、红外表征、热重分析和X射线粉末衍射等技术确定了化合物的组成和结构.配合物1是β-Anderson{Cr(OH)6Mo6O18}3-阴离子使用桥氧桥连Ag(Ⅰ)离子,形成一维链状结构;其配阳离子是Ag(Ⅰ)离子与异烟酸吡啶环氮连接,形成线性结构的{Ag(C6H5NO2)2}+配阳离子,由于存在AgAg和吡啶环π-π弱相互作用,在晶体结构中形成双聚{Ag(C6H5NO2)2}2+2结构,并且进一步与多酸阴离子端氧弱配位连接,形成二维结构.配合物2的主体结构是由Ag+和β-Anderson结构阴离子{Cr(OH)6Mo6O18}3-通过配位键连接形成二维网状结构.  相似文献   
994.
自洽场理论(SCFT)是目前国内外研究纳米粒子聚合物复合材料以及聚合物材料的重要研究理论之一,基于自洽场理论对掺杂有无机性纳米粒子的AB嵌段聚合物体系进行场理论自组装模拟。对无机性纳米粒子AB嵌段聚合物体系中的纳米粒子与AB嵌段聚合物之间的相互作用势,本文引入一个势函数u(r),然后对体系进行自洽场理论分析和计算模拟。通过对纳米粒子半径、浓度对体系平衡态影响的计算模拟研究发现:当纳米粒子浓度、半径逐步增大时,其纳米粒子表面与聚合物的分布方式从层状式分布逐步过渡到发散式分布;同时还研究发现无机性纳米粒子嵌段聚合物体系中的A、B嵌段聚合物浓度对纳米粒子的分布情况无影响。综述以上的结果验证无机性纳米粒子/嵌段聚合物体系中纳米粒子的表面效应和体积效应对体系的平衡态有很大的影响。  相似文献   
995.
将Fe、Fe3N粉末按比例混合,高温高压合成名义成分的Fe16N2非晶块体材料,然后在不同温度下低温真空退火,制备了α″-Fe16N2相块体材料.结果显示,合成α″-Fe16N2的最佳退火温度为190℃,所得样品为软磁材料,矫顽力约50 A/m,其室温比饱和磁化强度为205 A·m2/kg,超过纯铁的室温比饱和磁化强度200 A·m2/kg.  相似文献   
996.
超支化聚缩水甘油醚(HPG)、丙烯酰胺(AM)在铈盐-羟基引发体系下发生自由基聚合,得到了高度支化的水溶性超支化聚丙烯酰胺HPG-star-PAM,采用傅里叶变换红外光谱(FT-IR)、核磁共振氢谱(1 H-NMR)及热失重分析(TGA)对聚合物结构和组成进行了表征,使用乌式黏度计测定了聚合物的特性黏数,并使用旋转流变仪研究了其流变特性,结果表明高度支化的聚丙烯酰胺样品具有优异的抗剪切性能.  相似文献   
997.
聚合物驱注入与产出聚丙烯酰胺的对比研究   总被引:1,自引:0,他引:1  
通过应用美国Millipore切向流超滤系统,将见聚油井产出聚丙烯酰胺溶液提纯浓缩后分析其质量浓度,进而准确分析见聚油井产出聚丙烯酰胺分子量和水解度,并与注入聚丙烯酰胺分子量和水解度进行对比研究。研究结果表明,与注入聚丙烯酰胺相比,见聚油井产出聚丙烯酰胺的分子量明显降低,水解度则显著增加,变化差异与聚丙烯酰胺的注入情况、油藏条件、渗流条件、井距及停留时间等密切相关。这对深入了解聚合物驱的作用机理及聚合物驱后进一步提高采收率具有理论意义和实用价值。  相似文献   
998.
玻璃包裹非晶铁磁纤维的应力阻抗效应在应力传惑器以及智能吸汲材料寺万回有巳大的潜在应用.本文从LLG和Maxwell方程出发,从理论上分析了非晶铁磁纤维的应力阻抗效应以及诸多内外部因素对它的影响.分析结果表明,当其他因素不变时,应力阻抗效应分别随着外应力、外磁场、饱和磁致伸缩系数、饱和磁化强度以及频率的增大先增后减,但对纤维半径变化最敏感,而饱和磁化强度对应力阻抗效应的影响则很小.上述研究对非晶铁磁纤维制造工艺的优化以及应力阻抗效应最佳实验条件的探索具有一定的指导意义.  相似文献   
999.
海上油田实施化学驱高效开发新模式,受制于大井距、多层段、强非均质性以及海上平台寿命有限等因素,使得传统聚合物驱方案设计适应性较差且调整余地较小,如何解决这些难题进而科学地对聚合物注入方案进行设计、优化和控制成为新模式在海上油田进一步推广的关键。重点对聚合物驱见效阶段的见效机理及强化见效控制对策进行研究,通过核磁共振实验分析聚合物驱见效阶段不同级别孔隙的动用状况,从微观角度揭示聚合物驱见效机理,并基于数值模拟和代理模型对见效阶段注入浓度优化控制方法展开研究。结果表明:(1)注入聚合物溶液体系的适应性在见效阶段体现为体系的微观流度比改善能力对不同级别孔隙不同油水分布状况的匹配性;(2)对于见效阶段而言,优化目标实际上是加强动用均衡性,强化见效,使在后期更加难以动用的小孔隙在见效阶段得到有效动用;(3)在代理模型思想指导下,建立了注入浓度与强化见效主控因素之间的响应面决策模型,可以快速、有效指导聚合物驱全过程注入参数方案设计。  相似文献   
1000.
丁醇的分离问题是生物丁醇工业化及应用过程中急需解决的难题之一.从不同发酵-分离耦合技术的分离效果和经济效益出发,分析了渗透蒸发技术在丁醇分离中的优势.综述了渗透蒸发分离丁醇发酵液或模拟发酵液的研究进展,对聚二甲基硅氧烷(PDMS)、聚三甲基硅-1-丙炔(PTMSP)及其改性膜和其他聚合物膜的特点与分离性能进行了总结.另外,还关注了支撑液膜在丁醇分离中的应用及其存在的稳定性问题,分析了丁醇发酵液中存在的溶剂小分子、中间产物及生物大分子等对分离性能的影响.最后,对用于生物丁醇分离的渗透蒸发膜的未来发展进行了展望.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号